Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(5): e4984, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607190

RESUMO

Enzyme scaffolding is an emerging approach for enhancing the catalytic efficiency of multi-enzymatic cascades by controlling their spatial organization and stoichiometry. This study introduces a novel family of engineered SCAffolding Bricks, named SCABs, utilizing the consensus tetratricopeptide repeat (CTPR) domain for organized multi-enzyme systems. Two SCAB systems are developed, one employing head-to-tail interactions with reversible covalent disulfide bonds, the other relying on non-covalent metal-driven assembly via engineered metal coordinating interfaces. Enzymes are directly fused to SCAB modules, triggering assembly in a non-reducing environment or by metal presence. A proof-of-concept with formate dehydrogenase (FDH) and L-alanine dehydrogenase (AlaDH) shows enhanced specific productivity by 3.6-fold compared to free enzymes, with the covalent stapling outperforming the metal-driven assembly. This enhancement likely stems from higher-order supramolecular assembly and improved NADH cofactor regeneration, resulting in more efficient cascades. This study underscores the potential of protein engineering to tailor scaffolds, leveraging supramolecular spatial-organizing tools, for more efficient enzymatic cascade reactions.


Assuntos
Formiato Desidrogenases , Engenharia de Proteínas , Engenharia de Proteínas/métodos , Formiato Desidrogenases/química
2.
J Inorg Biochem ; 253: 112487, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38306887

RESUMO

Metal-dependent, nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs) are complex metalloenzymes coupling biochemical transformations through intricate electron transfer pathways. Rhodobacter capsulatus FDH is a model enzyme for understanding coupled catalysis, in that reversible CO2 reduction and formate oxidation are linked to a flavin mononuclotide (FMN)-bound diaphorase module via seven iron-sulfur (FeS) clusters as a dimer of heterotetramers. Catalysis occurs at a bis-metal-binding pterin (Mo) binding two molybdopterin guanine dinucleotides (bis-MGD), a protein-based Cys residue and a participatory sulfido ligand. Insights regarding the proposed electron transfer mechanism between the bis-MGD and the FMN have been complicated by the discovery that an alternative pathway might occur via intersubunit electron transfer between two [4Fe4S] clusters within electron transfer distance. To clarify this difference, the redox potentials of the bis-MGD and the FeS clusters were determined via redox titration by EPR spectroscopy. Redox potentials for the bis-MGD cofactor and five of the seven FeS clusters could be assigned. Furthermore, substitution of the active site residue Lys295 with Ala resulted in altered enzyme kinetics, primarily due to a more negative redox potential of the A1 [4Fe4S] cluster. Finally, characterization of the monomeric FdsGBAD heterotetramer exhibited slightly decreased formate oxidation activity and similar iron-sulfur clusters reduced relative to the dimeric heterotetramer. Comparison of the measured redox potentials relative to structurally defined FeS clusters support a mechanism by which electron transfer occurs within a heterotetrameric unit, with the interfacial [4Fe4S] cluster serving as a structural component toward the integrity of the heterodimeric structure to drive efficient catalysis.


Assuntos
Formiato Desidrogenases , NAD , NAD/química , Formiato Desidrogenases/química , Elétrons , Oxirredução , Ferro/química , Enxofre/química , Formiatos
3.
Sci Rep ; 14(1): 3819, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360844

RESUMO

Formate dehydrogenase (FDH) is critical for the conversion between formate and carbon dioxide. Despite its importance, the structural complexity of FDH and difficulties in the production of the enzyme have made elucidating its unique physicochemical properties challenging. Here, we purified recombinant Methylobacterium extorquens AM1 FDH (MeFDH1) and used cryo-electron microscopy to determine its structure. We resolved a heterodimeric MeFDH1 structure at a resolution of 2.8 Å, showing a noncanonical active site and a well-embedded Fe-S redox chain relay. In particular, the tungsten bis-molybdopterin guanine dinucleotide active site showed an open configuration with a flexible C-terminal cap domain, suggesting structural and dynamic heterogeneity in the enzyme.


Assuntos
Proteínas de Bactérias , Formiato Desidrogenases , Methylobacterium extorquens , Microscopia Crioeletrônica , Formiato Desidrogenases/química , Methylobacterium extorquens/enzimologia , Proteínas de Bactérias/genética
4.
Biochimie ; 216: 194-204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925050

RESUMO

NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) from the bacterium Staphylococcus aureus (SauFDH) plays an important role in the vital activity of this bacterium, especially in the form of biofilms. Understanding its mechanism and structure-function relationship can help to find special inhibitors of this enzyme, which can be used as medicines against staphylococci. The gene encoding SauFDH was successfully cloned and expressed in our laboratory. This enzyme has the highest kcat value among the described FDHs and also has a high temperature stability compared to other enzymes of this group. That is why it can also be considered as a promising catalyst for NAD(P)H regeneration in the processes of chiral synthesis with oxidoreductases. In this work, the principle of rational design was used to improve SauFDH catalytic efficiency. After bioinformatics analysis of the amino acid sequence in combination with visualization of the enzyme structure (PDB 6TTB), 9 probable catalytically significant positions 119, 194, 196, 217-219, 246, 303 and 323 were identified, and 16 new mutant forms of SauFDH were obtained and characterized by kinetic experiments. The introduction of the mentioned substitutions in most cases leads to a decrease in stability at high temperatures and an increase at low temperatures. Substitutions in positions 119 and 194 lead to a decreasing of KMNAD+. A consistent decrease in the Michaelis constant in the Ile-Val-Ala-Gly series at position 119 of SauFDH is shown. KMNAD+ of mutant SauFDH V119G decreased by 27 times compared to the wild-type enzyme. After substitution Phe194Val KMNAD + decreased by 3.5 times. The catalytic constant for this mutant form practically did not change. For this mutant form, an increase in catalytic efficiency was demonstrated through the use of a multicomponent buffer system.


Assuntos
Formiato Desidrogenases , NAD , NAD/metabolismo , Mutagênese Sítio-Dirigida , Formiato Desidrogenases/genética , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade , Cinética
5.
Biophys Chem ; 304: 107128, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922819

RESUMO

Engineering of reaction media is an exciting alternative for modulating kinetic properties of biocatalytic reactions. We addressed the combined effect of an aqueous two-phase system (ATPS) and high hydrostatic pressure on the kinetics of the Candida boidinii formate dehydrogenase-catalyzed oxidation of formate to CO2. Pressurization was found to lead to an increase of the binding affinity (decrease of KM, respectively) and a decrease of the turnover number, kcat. The experimental approach was supported using thermodynamic modeling with the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) equation of state to predict the liquid-liquid phase separation and the molecular crowding effect of the ATPS on the kinetic properties. The ePC-SAFT was able to quantitatively predict the KM-values of the substrate in both phases at 1 bar as well as up to a pressure of 1000 bar. The framework presented enables significant advances in bioprocess engineering, including the design of processes with significantly fewer experiments and trial-and-error approaches.


Assuntos
Formiato Desidrogenases , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Biocatálise , Cinética , Candida
6.
J Am Chem Soc ; 145(47): 25850-25863, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967365

RESUMO

The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.


Assuntos
Cupriavidus necator , Molibdênio , Molibdênio/química , Formiato Desidrogenases/química , Cupriavidus necator/metabolismo , Dióxido de Carbono/química , Oxirredução , Formiatos
7.
Acta Crystallogr D Struct Biol ; 79(Pt 11): 1010-1017, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37860962

RESUMO

Candida boidinii NAD+-dependent formate dehydrogenase (CbFDH) has gained significant attention for its potential application in the production of biofuels and various industrial chemicals from inorganic carbon dioxide. The present study reports the atomic X-ray crystal structures of wild-type CbFDH at cryogenic and ambient temperatures, as well as that of the Val120Thr mutant at cryogenic temperature, determined at the Turkish Light Source `Turkish DeLight'. The structures reveal new hydrogen bonds between Thr120 and water molecules in the active site of the mutant CbFDH, suggesting increased stability of the active site and more efficient electron transfer during the reaction. Further experimental data is needed to test these hypotheses. Collectively, these findings provide invaluable insights into future protein-engineering efforts that could potentially enhance the efficiency and effectiveness of CbFDH.


Assuntos
Formiato Desidrogenases , Saccharomycetales , Formiato Desidrogenases/genética , Formiato Desidrogenases/química , Candida/genética , Cristalografia por Raios X
8.
World J Microbiol Biotechnol ; 39(12): 352, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864750

RESUMO

Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Catálise , Formiatos/metabolismo
9.
Chembiochem ; 24(24): e202300587, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37783667

RESUMO

Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.


Assuntos
NAD , Saccharomycetales , NADP/metabolismo , NAD/metabolismo , Formiato Desidrogenases/química , Saccharomycetales/metabolismo , Cinética
10.
J Phys Chem B ; 127(39): 8382-8392, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37728992

RESUMO

The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.


Assuntos
Cupriavidus necator , Formiato Desidrogenases , Formiato Desidrogenases/química , Dióxido de Carbono/química , Oxirredução , Formiatos
11.
Int J Biol Macromol ; 253(Pt 2): 126637, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657580

RESUMO

The expression of multifunctional proteins can facilitate the setup of a biotechnology process that requires multiple functions absolved by different proteins. Herein the functional and conformational characterization of a formate dehydrogenase-monooxygenase chimera enzyme is presented. The fused enzyme (FDH-PAMO) was prepared by linking the C-terminus of the mutant NADP+-dependent formate dehydrogenase from Pseudomonas sp. 101 (FDH) to the N-terminus of the NADPH-dependent monooxygenase from Thermobifida fusca (PAMO) through a peptide linker of 9 amino acids (ASGGGGSGT) generating a chimera protein of 107,056 Da. The catalytic properties (e.g., kinetic parameters kcat and Km), stability, fluorescence and circular dichroism spectra showed that the so-obtained chimera enzyme FDH-PAMO retains the same functional and conformational properties of the two parental enzymes. Furthermore, SEC chromatographic analysis indicated that, in solution (pH 7.4), FDH-PAMO assembles to tetramers (up to 4.2 %) due to the propensity of FDH and PAMO to form dimers, up to 96.6 % and 6.2 %, respectively. This study provides valuable insights into the structural stability of a thermostable protein (e.g., PAMO) after increasing its size through fusion with another similarly sized thermostable protein (e.g., FDH).


Assuntos
Formiato Desidrogenases , Oxigenases de Função Mista , Oxigenases de Função Mista/química , NADP/metabolismo , Formiato Desidrogenases/química , NADPH Desidrogenase , Pseudomonas/genética , Pseudomonas/metabolismo
12.
J Agric Food Chem ; 71(23): 9009-9019, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265255

RESUMO

Efficient formate dehydrogenase (FDH)-based cofactor regeneration systems are widely used for biocatalytic processes due to their ready availability, low reduction potential, and production of only benign byproducts. However, FDHs are usually specific to NAD+, and NADPH regeneration with formate is challenging. Herein, an FDH with a preference for NAD+ from Azospirillum palustre (ApFDH) was selected owing to its high activity. By static and dynamic structural analyses, a beneficial substitution, D222Q, was identified for cofactor-preference switching. However, its total activity was substantially decreased by 90% owing to the activity-specificity trade-off. Subsequently, a semirational library was designed and screened, which yielded a variant ApFDHD222Q+A199G+H380S with satisfactory activity and NADP+ specificity. Our analysis of dynamical cross-correlations revealed a substitution combination that brought balance to the dynamical correlation network. This combination successfully overcame the activity-specificity-stability trade-off and resulted in a beneficial outcome. The substitution combination (D222Q-A199G/H380S-C256A/C146S) enabled the simultaneous improvement of activity, specificity, and stability and was successfully applied to other 17 FDHs. Finally, by employing engineered ApFDH, an NADPH regeneration system was developed, optimized, and utilized for the asymmetric biosynthesis of l-phosphinothricin.


Assuntos
Formiato Desidrogenases , NAD , NADP/metabolismo , Formiato Desidrogenases/química , NAD/metabolismo , Aminoácidos/metabolismo , Biocatálise
13.
Chemistry ; 29(47): e202301113, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294852

RESUMO

The enzymatic reduction of carbon dioxide presents limited applicability due to denaturation and the impossibility of biocatalyst recovery; disadvantages that can be minimized by its immobilization. Here, a recyclable bio-composed system was constructed by in-situ encapsulation under mild conditions using formate dehydrogenase in a ZIF-8 metalorganic framework (MOF) in the presence of magnetite. The partial dissolution of ZIF-8 in the enzyme's operation medium can be relatively inhibited if the concentration of magnetic support used exceeds 10 mg mL-1 . The bio-friendly environment for immobilization does not harm the integrity of the biocatalyst, and the production of formic acid is improved 3.4-fold compared to the free enzyme because the MOFs act as concentrators of the enzymatic cofactor. Furthermore, the bio-composed system retains 86 % of its activity after a long time of five cycles, thus indicating an excellent magnetic recovery and a good reusability.


Assuntos
Formiato Desidrogenases , Oxirredução , Dióxido de Carbono/química , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Cápsulas
14.
Adv Sci (Weinh) ; 10(20): e2300752, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37162224

RESUMO

Promoting the activity of biological enzymes under in vitro environment is a promising technique for bioelectrocatalytic reactions, such as the conversion of carbon dioxide (CO2 ) into valuable chemicals, which is a promising strategy to address the environmental issue of CO2 in the atmosphere; however, this technique remains challenging. Herein, a nanocage structure for enzyme confinement is synthesized to enable the in situ encapsulation of formate dehydrogenase (FDH) in a porous metal-organic framework, which acts as a coenzyme and boosts the hybrid synergistic catalysis using enzymes. This study reveals that the synthesized FDH@ZIF-8 nanocage-structured hybrid (CSH) catalyst exhibits an improved catalytic ability of the enzymes and increases the hydrophobicity of the electrode and its affinity to CO2 . Thus, CSH can trap CO2 and control its microenvironments. The CSH catalyst boosts the conversion rate of CO2 to formic acid (HCOOH) to 28 times higher than that when using pure FDH. The in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) spectra indicates that OCHO* is the key intermediate. Density functional theory (DFT) calculations show that CSH has extremely low overpotential and is particularly effective for producing formate. This protection architecture for enzymes considerably promotes their biological application under in vitro environments.


Assuntos
Dióxido de Carbono , Formiatos , Dióxido de Carbono/química , Catálise , Formiatos/química , Formiato Desidrogenases/química
15.
Inorg Chem ; 62(16): 6332-6338, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37026841

RESUMO

Formate dehydrogenase (FDH) enzymes catalyze redox interconversion of CO2 and HCO2-, with a key mechanistic step being the transfer of H- from HCO2- to an oxidized active site featuring a [MVI≡S] group in a sulfur-rich environment (M = Mo or W). Here, we report reactivity studies with HCO2- and other reducing agents of a synthetic [WVI≡S] model complex ligated by dithiocarbamate (dtc) ligands. Reactions of [WVIS(dtc)3][BF4] (1) conducted in MeOH solvent generated [WVIS(S2)(dtc)2] (2) and [WVS(µ-S)(dtc)]2 (3) products by a solvolysis pathway that was accelerated by the presence of [Me4N][HCO2] but did not require it. Under MeOH-free conditions, the reaction of 1 with [Et4N][HCO2] produced some [WIV(µ-S)(µ-dtc)(dtc)]2 (4), but predominantly [WV(dtc)4]+ (5), along with stoichiometric CO2 detected by headspace gas chromatography (GC) analysis. Stronger hydride sources such as K-selectride generated the more reduced analogue, 4, exclusively. The reaction of 1 with the electron donor, CoCp2, also produced 4 and 5 in varying amounts depending on reaction conditions. These results indicate that formates and borohydrides act as electron donors rather than hydride donors toward 1, an outcome that diverges from the behavior of FDHs. The difference is ascribed to the more oxidizing potential of [WVI≡S] complex 1 when supported by monoanionic dtc ligands that allows electron transfer to outcompete hydride transfer, as compared to the more reduced [MVI≡S] active sites supported by dianionic pyranopterindithiolate ligands in FDHs.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Domínio Catalítico , Formiato Desidrogenases/química , Oxirredução , Compostos de Tungstênio/química , Tiocarbamatos/química
16.
Biochim Biophys Acta Bioenerg ; 1864(1): 148919, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152681

RESUMO

Formate hydrogenlyase-1 (FHL-1) is a complex-I-like enzyme that is commonly found in gram-negative bacteria. The enzyme comprises a peripheral arm and a membrane arm but is not involved in quinone reduction. Instead, FHL-1 couples formate oxidation to the reduction of protons to molecular hydrogen (H2). Escherichia coli produces FHL-1 under fermentative conditions where it serves to detoxify formic acid in the environment. The membrane biology and bioenergetics surrounding E. coli FHL-1 have long held fascination. Here, we review recent work on understanding the molecular basis of formic acid efflux and influx. We also consider the structure and function of E. coli FHL-1, its relationship with formate transport, and pay particular attention to the molecular interface between the peripheral arm and the membrane arm. Finally, we highlight the interesting phenotype of genetic mutation of the ND1 Loop, which is located at that interface.


Assuntos
Escherichia coli , Formiato Desidrogenases , Formiatos , Fermentação , Formiato Desidrogenases/química , Formiatos/química , Hidrogênio
17.
Phys Chem Chem Phys ; 24(45): 27930-27939, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36373217

RESUMO

Osmolytes are well-known biocatalyst stabilisers as they promote the folded state of proteins, and a stabilised biocatalyst might also improve reaction kinetics. In this work, the influence of four osmolytes (betaine, glycerol, trehalose, and trimethylamine N-oxide) on the activity and stability of Candida bondinii formate dehydrogenase cbFDH was studied experimentally and theoretically. Scanning differential fluorimetric studies were performed to assess the thermal stability of cbFDH, while UV detection was used to reveal changes in cbFDH activity and reaction equilibrium at osmolyte concentrations between 0.25 and 1 mol kg-1. The thermodynamic model ePC-SAFT advanced allowed predicting the effects of osmolyte on the reaction equilibrium by accounting for interactions involving osmolyte, products, substrates, and water. The results show that osmolytes at low concentrations were beneficial for both, thermal stability and cbFDH activity, while keeping the equilibrium yield at high level. Molecular dynamics simulations were used to describe the solvation around the cbFDH surface and the volume exclusion effect, proofing the beneficial effect of the osmolytes on cbFDH activity, especially at low concentrations of trimethylamine N-oxide and betaine. Different mechanisms of stabilisation (dependent on the osmolyte) show the importance of studying solvent-protein dynamics towards the design of optimised biocatalytic processes.


Assuntos
Betaína , Formiato Desidrogenases , Formiato Desidrogenases/química , Betaína/química , Metilaminas/química , Termodinâmica
18.
ACS Appl Mater Interfaces ; 14(41): 46421-46426, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194638

RESUMO

The development of electrodes for efficient CO2 reduction while forming valuable compounds is critical. The use of enzymes as catalysts provides the advantage of high catalytic activity in combination with highly selective transformations. We describe the electrical wiring of a carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans (ChCODH II) using a cobaltocene-based low-potential redox polymer for the selective reduction of CO2 to CO over gas diffusion electrodes. High catalytic current densities of up to -5.5 mA cm-2 are achieved, exceeding the performance of previously reported bioelectrodes for CO2 reduction based on either carbon monoxide dehydrogenases or formate dehydrogenases. The proposed bioelectrode reveals considerable stability with a half-life of more than 20 h of continuous operation. Product quantification using gas chromatography confirmed the selective transformation of CO2 into CO without any parasitic co-reactions at the applied potentials.


Assuntos
Monóxido de Carbono , Formiato Desidrogenases , Formiato Desidrogenases/química , Monóxido de Carbono/química , Dióxido de Carbono/química , Polímeros , Instalação Elétrica , Eletrodos , Oxirredução
19.
Chembiochem ; 23(21): e202200428, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36066500

RESUMO

Fusion enzymes are attractive tools for facilitating the assembly of biocatalytic cascades for chemical synthesis. This approach can offer great advantages for cooperative redox cascades that need the constant supply of a donor molecule. In this work, we have developed a self-sufficient bifunctional enzyme that can be coupled to transaminase-catalyzed reactions for the efficient recycling of the amino donor (L-alanine). By genetic fusion of an alanine dehydrogenase (AlaDH) and a formate dehydrogenase (FDH), a redox-complementary system was applied to recycle the amino donor and the cofactor (NADH), respectively. AlaDH and FDH were assembled in both combinations (FDH-AlaDH and AlaDH-FDH), with a 2.5-fold higher enzymatic activity of the latter system. Then, AlaDH-FDH was coupled to two different S-selective transaminases for the synthesis of vanillyl amine (10 mM) reaching up to 99 % conversion in 24 h in both cases. Finally, the multienzyme system was reused for at least 3 consecutive cycles when implemented in dialysis-assisted biotransformations.


Assuntos
Alanina Desidrogenase , Formiato Desidrogenases , Formiato Desidrogenases/química , Alanina Desidrogenase/metabolismo , Transaminases/genética , Transaminases/metabolismo , Biocatálise , Oxirredução
20.
Nat Commun ; 13(1): 5395, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104349

RESUMO

The prototypical hydrogen-producing enzyme, the membrane-bound formate hydrogenlyase (FHL) complex from Escherichia coli, links formate oxidation at a molybdopterin-containing formate dehydrogenase to proton reduction at a [NiFe] hydrogenase. It is of intense interest due to its ability to efficiently produce H2 during fermentation, its reversibility, allowing H2-dependent CO2 reduction, and its evolutionary link to respiratory complex I. FHL has been studied for over a century, but its atomic structure remains unknown. Here we report cryo-EM structures of FHL in its aerobically and anaerobically isolated forms at resolutions reaching 2.6 Å. This includes well-resolved density for conserved loops linking the soluble and membrane arms believed to be essential in coupling enzymatic turnover to ion translocation across the membrane in the complex I superfamily. We evaluate possible structural determinants of the bias toward hydrogen production over its oxidation and describe an unpredicted metal-binding site near the interface of FdhF and HycF subunits that may play a role in redox-dependent regulation of FdhF interaction with the complex.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Escherichia coli , Proteínas de Escherichia coli/química , Formiato Desidrogenases/química , Hidrogênio , Hidrogenase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...